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Abstract

This paper proposes a method for automatic classification of spectral do-

main OCT data for the identification of patients with retinal diseases such

as Diabetic Macular Edema (DME). We address this issue as an anomaly

detection problem and propose a method that not only allows the classifica-

tion of the OCT volume, but also allows the identification of the individual

diseased B-scans inside the volume. Our approach is based on modeling the

appearance of normal OCT images with a Gaussian Mixture Model (GMM)

and detecting abnormal OCT images as outliers. The classification of an

OCT volume is based on the number of detected outliers. Experimental re-

sults with two different datasets show that the proposed method achieves a
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sensitivity and a specificity of 80% and 93% on the first dataset, and 100%

and 80% on the second one. Moreover, the experiments show that the pro-

posed method achieves better classification performance than other recently

published works.

Key words: Diabetic retinopathy, Diabetic macular edema, SD-OCT,

Classification, Anomaly detection.

1. Introduction

1.1. Clinical motivation

Diabetic retinopathy (DR) and diabetic macular edema (DME) are lead-

ing causes of vision loss worldwide [1]. As the number of people affected by

diabetes is expected to grow exponentially in the next few years [2, 3], early

detection and treatment of these retinal diseases is becoming a major health

issue in developped countries. Currently, the two main tools used for the

screening of retinal diseases are fundus photography and optical coherence

tomography (OCT) devices. The former type of device allows capturing the

inner surface of the eye, including retina, optic disc, macula, and other reti-

nal tissues using low power microscopes equipped with an embedded camera

system [4]. The latter is based on infrared optical reflectivity and produces

cross-sectional and three-dimensional images of the central retina. The new

generation of OCT imaging, namely Spectral Domain OCT (SD-OCT) offers

higher resolution and faster image acquisition over conventional time domain

OCT [5]. SD-OCT can produce from 27, 000 to 40, 000 A-scans/second with

an axial resolution ranging from 3.5µm to 6µm [6].

While many previous works in literature are dedicated to the analysis of

2



fundus images [7, 8], in this work we focus on the automatic analysis and

classification of SD-OCT images. Indeed, the use of fundus photography

is limited to the detection of signs which are visible in the retinal surface,

such as hard and soft exudates, or micro-aneurysms, and fundus photogra-

phy cannot always identify the clinical signs such as cysts not visible in the

retinal surface. Moreover, contrary to fundus photography, SD-OCT pro-

vides quantitative measurements of retinal thickness and information about

cross-sectional retinal morphology.

1.2. Related work

The main, common, feature associated with DME is an increase of the

macular thickness in the central area of the retina [9]. Therefore, several

methods have been proposed which are based on the segmentation of retinal

layers and the identification of signs of the disease such as intraretinal and

subretinal fluid [10, 11]. For example, Quellec et al. [10] proposed a method

that starts with the segmentation of 10 retinal layers and the extraction of

texture and thickness properties in each layer. Then, local retinal abnor-

malities are detected by classifying the differences between the properties of

normal retinas and the diseased ones. Chen et al. [11] proposed a method for

3D segmentation of fluid regions in OCT data using a graph-based approach.

The method is based on the segmentation of retinal layers and the identifica-

tion of potential fluid regions inside the layers. Then, a graph-cut method is

applied to get the final segmentation using the probabilities of an initial seg-

mentation based on texture classification as constraints. Although methods

based on a prior segmentation of retinal layers have reported good detection

accuracy, this first step is still difficult and subject to errors [12, 13]. More-
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over, as mentioned by Lee et al., retinal thickness measurement differences

produced by different algorithms are important and it is not always possible

to compare retinal thicknesses among eyes in which thickness measurements

have been obtained by different systems [14].

In this paper, we focus on methods based on direct classification of SD-

OCT data without prior segmentation of retinal layers. Several methods

have recently been proposed in literature for the classification of SD-OCT

data and the identification of patients with retinal diseases versus normal

patients. Liu et al. [15] proposed a method based on local binary patterns

(LBP) and gradient information for macular pathology detection in OCT

images. The method uses a multi-resolution approach and builds a 3-level

multi-scale spatial pyramid of the foveal B-scan for each patient. LBP and

gradients are then computed from each block at every level of the pyramid,

and represented as histograms. The obtained histograms are concatenated

into a global descriptor whose dimension is reduced using principal compo-

nent analysis (PCA). Finally a support vector machines (SVM) classifier is

used for classification. With a dataset of 326 OCT volumes, the method

achieved good results in detecting OCT scans containing different patholo-

gies such as DME or age-related macular degeneration (AMD), with an area

under the ROC curve (AUC) value of 0.93.

Another method using gradient information and SVM is proposed by

Srinivasan et al. [16] to distinguish between DME, AMD, and normal SD-

OCT volumes. The method is based on pre-processing to reduce the speckle

noise in OCT images and flattening of the images to reduce the variation of

retinal curvature among patients. Histograms of oriented gradients (HOG)
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features are then extracted from each B-scan of an OCT volume and a linear

SVM is used for classification. Note that the method classifies each individual

B-scan into one of the three categories, i.e. DME, AMD and normal, and

classifies an OCT volume based on the number of B-scans in each category.

On a dataset of 45 patients containing 15 normal subjects, 15 DME patients

and 15 AMD patients, the method achieved a correct classification of 100%,

100% and 86.67% for AMD, DME and normal cases, respectively. Note that

no specificity or sensitivity values are reported in this study.

Anantrasirichai et al. [17] proposed a method for OCT images classifi-

cation using texture features such as LBP, grey-level co-occurence matrices

and wavelet features, together with retinal layer thickness. The method relies

on SVM to classify retinal OCT images of normal patients against patients

with glaucoma. A classification accuracy of about 85% is achieved with a

dataset of 24 OCT volumes. Albarrak et al. [18] first decomposed the OCT

volume into sub-volumes, and extracted both LBP and HOG features in each

sub-volume. The features from the sub-volumes are concatenated into a sin-

gle feature vector per OCT volume, and PCA is applied for dimensionality

reduction. Finally, a Bayesian network classifier is used and the method is

tested with 140 OCT volumes of normal and AMD patients. The method

achieved an AUC value of 94.4%.

The authors in [19] proposed a method based on the bag-of-words (BoW)

approach for OCT images classification. The method starts with the detec-

tion and selection of few keypoints in each individual B-scan. This is achieved

by keeping the most salient points corresponding to the top 3% of the ver-

tical gradient values. Then, an image patch of size 9 × 9 pixels is extracted
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around each keypoint, and PCA is applied to transform every patch into a

feature vector of dimension 9. These feature vectors are then used to cre-

ate a visual vocabulary using k -means clustering algorithm, which is used to

represent each OCT volume as a histogram of the words occurences. Finally,

this histogram is used as feature vector to train a random forest classifier.

On the task of classifying OCT volumes between AMD and normal cases,

the method achieved an AUC of 98.4% with a dataset of 384 OCT volumes.

Another approach based on BoW model is proposed by Lemâıtre et al. [20]

for automatic classification of OCT volumes. The method is based on LBP

features to describe the texture of OCT images and dictionary learning us-

ing the BoW approach. In this work, the authors extracted both 2D and

3D LBP features to describe OCT volumes, and show that 3D LBP features

perform better than 2D LBP features from each B-scan. The features are

used to create a visual vocabulary using the BoW approach, and a random

forest classier is employed for classification. The method achieved a speci-

ficity and a sensitivity of 75% and 87.5% respectively, with a datatset of 32

OCT volumes.

1.3. Contributions

In this paper, we propose a novel method for automatic identification of

patients with retinal diseases, such as DME, versus normal subjects. Our

approach is based on modeling the appearance of normal OCT images with

a Gaussian Mixture Model (GMM) and detecting abnormal OCT images as

outliers. Then, the classification of an OCT volume as normal or abnor-

mal is based on the number of detected outliers in the volume. The main

contributions of our paper are as follows:
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• we propose a method to model the global appearance of normal OCT

volumes using a Gaussian mixture model (GMM).

• we use an anomaly detection approach to identify abnormal B-scans as

outliers to the GMM model, and finally detect unhealthy OCT volumes

based on the number of abnormal B-scans.

Our approach differs from previous works in that our abnormal B-scan

detection method does not require a training set with manually identifed

normal and abnormal B-scans which is a tedious and time consuming task.

The rest of this paper is organized as follows. In Section 2, we describe the

proposed anomaly detection approach in details. Experiments and results are

discussed in Section 3. Finally, concluding remarks are drawn in Section 4.

2. Methodology

This section describes the proposed method for SD-OCT volumes classi-

fication and the identification of abnormal B-scans inside each volume. As

mentioned in Section 1.3, the proposed method is based on an anomaly de-

tection approach, in which we model the appearance of normal OCT images

with a Gaussian Mixture Model (GMM) and detect abnormal OCT images as

outliers. The method comprises four main steps: i) pre-processing to remove

noise and align the B-scans; ii) the computation of the GMM model; iii) the

detection of individual abnormal B-scans; and iv) the classification of OCT

volumes. Each of these steps is further described in the next subsections.
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2.1. Pre-processing

The SD-OCT data is organized as a 3D cube, i.e. a series of slices called

B-scans as shown in Fig. 1(a). Each B-scan is a cross-sectional image of the

retina. The first pre-processing stage of the proposed methodology applies

an image denoising method to reduce the speckle noise in each B-scan, since

SD-OCT images are known to be corrupted by a speckle noise [21]. In our

work, we used the Non-Local Means (NL-means) algorithm [22] which offers

the advantage to reduce the noise while preserving the details and texture

of the original image. An example of filtering using NL-means filter on an

OCT image is depicted in Fig. 1(c).

Furthermore, because SD-OCT images of the retina show natural cur-

vatures across scans, we also apply a flattening procedure described in [15]

to ensure that the dominant features are aligned in a nearly horizontal line.

This is done by first finding the retina area in the B-scan using image thresh-

olding and morphological operations, and then fitting a curve to the found

region using a second-order polynomial. The entire retina region is finally

warped so that it is approximately horizontal. The reader is refered to [15]

for details. An example of a flattened OCT B-scan is shown in the image of

Fig. 1(c).

2.2. Training and model creation

In this section, we describe our approach for modeling the gobal appear-

ance of normal SD-OCT images. More specifically, we assume that we have

a set of N SD-OCT volumes which are known to be from healthy patients.

As shown in Fig. 1(a), each OCT volume is organized as a series of B-scans
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Figure 1: SD-OCT volume: (a) Organization of the OCT data; (b) an original B-scan; (c)

denoised and flattened B-scan.

along the y-axis, and each B-scan is a 2D image of size W × H in the x-z

plane.

Let V be one of the N normal SD-OCT volumes. We assume that each

volume V contains NY B-scans, where the value NY depends on the specific

resolution of the OCT device used for acquisition, and we represent each

B-scan as a vector b of size d = WH obtained by concatenation of the rows

of the W ×H 2D image. Then, we can represent the whole SD-OCT volume

as a set of NY vectors in Rd each corresponding to one B-scan of the volume:

V = {b1, b2, . . . , bNY
}, bi ∈ Rd for all i = 1, . . . , NY .

By putting together all B-scans from the N normal SD-OCT volumes,

we create a large data matrix X whose columns are the B-scans from all the

volumes: X = [b1, b2, . . . , bM ], with M = NNY the total number of normal

B-scans. In this formulation, we consider each B-scan as a vector in a d-

dimensional space. Since d = WH, where W ×H is the spatial resolution of

the B-scans, we have a very high dimensional feature space. For example, if

each B-scan is a 400× 512 image, then d = 204800.
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We apply principal components analysis (PCA) to reduce the dimen-

sionality of the data. We first compute the mean normal B-scan as b̄ =

1
M

∑M
j=1 bj, and center the data as follows: X = [b1 − b̄, b2 − b̄, . . . , bM − b̄].

We then compute the covariance matrix of the data as C = 1
M

XXT , and per-

form the eigen-decomposition of this symmetric matrix: C = UΛUT . The

eigenvectors of C, i.e. the columns of matrix U , form the set of principal

components of the data. The corresponding eigenvalues λi, i = 1, . . . , d, give

the importance of each axis. For dimensionality reduction, we keep the first

p dominant principal components corresponding to the p largest eigenvalues.

We set the value of p such that at least 95% of the total variance of the data

is retained. So, we set p such that
∑p

i=1 λi/
∑d

i=1 λi ≥ 0.95. PCA typically

reduces the dimension of the data from d = 204800 to few hundreds, i.e.

p = 300 or p = 500 as shown in Section 3.2.

In the reduced p-dimensional space, we represent the distribution of nor-

mal B-scans’ appearance with a Gaussian mixture model (GMM). We adopt

a GMM to account for the inter- and intra-patient variabilities of the inten-

sity appearance of the B-scans. A GMM is a parametric probability density

function represented as a weighted sum of K Gaussian component densi-

ties [23]:

p(x|θ) =
K∑
i=1

wigi(x|µi,Σi), (1)

where x ∈ Rp, wi, i = 1, . . . , K are the mixture weights which satisfy∑K
i=1wi = 1, and gi(x|µi,Σi) is the i-th component of the mixture model.

Each component of the model is a p-dimensional multivariate Gaussian de-
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fined by:

gi(x|µi,Σi) =
1

(2π)p/2|Σi|1/2
exp{−1

2
(x− µi)

TΣ−1
i (x− µi)}, (2)

where µi ∈ Rp is the mean vector of the Gaussian, and Σi is the p × p

covariance matrix.

The parameters of the model θ = {wi, µi,Σi, i = 1, . . . , K}, are learned

from the set of training data using the expectation-maximization (EM) al-

gorithm which iteratively estimates the parameters of the model [23]. In

practice, a single global parameter is set to define the GMM, which is the

number K of components. Once K is fixed, the EM algorithm estimates the

set of parameters θ = {wi, µi,Σi, i = 1, . . . , K}. We choose the best value

for K by cross-validation as discussed in Section 3.2. Moreover, for a good

initialization of the GMM we first use k-means clustering algorithm to create

K clusters from the set of training data, and we fit a Gaussian density to

each of the K clusters to initialize the EM algorithm.

A flowchart of the method for representing the appearance of normal B-

scans as a GMM is shown in Fig. 2, where the final model is illustrated for

the case p = 2.

2.3. Abnormal B-scans identification

Our approach is based on the identification of abnormal B-scans, i.e. B-

scans showing visible signs of retinal diseases, using the learned GMM. Given

a B-scan b of size W ×H, we first represent it as a vector in Rd, d = WH,

and project this d-dimensional vector onto the set of principal components

found in Section 2.2, to obtain b̃ ∈ Rp, where p� d.
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Figure 2: Flowchart of the Gaussian mixtures model creation. The final model is here

illustrated for p = 2.

Then, we compute the Mahalanobis distance from b̃ to the GMM as:

∆GMM(b̃) = argmin
i

∆i(b̃), (3)

where ∆i(b̃) is the distance from b̃ to the i-th component of the GMM

defined by:

∆i(b̃) = (b̃− µi)
TΣ−1

i (b̃− µi). (4)

In order to identify normal and abnormal B-scans, we need to set a thresh-

old value on the distance ∆GMM . That is, we consider as abnormal, B-scans

with distances from the GMM above a certain threshold value.

To explain how we find this threshold value, let us first consider the

case of 1D Gaussian distributions. If x is a 1D random variable normally

distributed as x ∼ N (µ, σ), then P (|x−µ| ≤ 2σ) = 0.95. Which means that,

with probability 0.95, the data point x lies within a distance of 2σ from the
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mean value µ. In the context of anomaly detection, data points which do

not satisfy this constraint are considered outliers or abnormal data points.

That is, x does not agree with the Gaussian model if |x− µ| > 2σ, and x is

therefore considered as an anomaly. This is the well known 2σ-rule for 1D

normal distributions.

This idea can be extended to the case of multivariate p-dimensional Gaus-

sian distributions. First, it can be shown that the Mahalanobis distance de-

fined in Equation (4) follows a χ2-distribution with p degrees of freedom, since

it is the sum of p Gaussian random variables [23, 24]. Therefore, ∆GMM ∼ χ2
p.

We can then detect outliers as data points in Rp with a Mahalanobis distance

that does not fit the χ2
p-distribution. We set the threshold value to be equal to

the 95% quantile of χ2-distribution with p degree of freedom, i.e. δ = χ2
p:0.95.

Finally, we consider a B-scan represented as a vector b, as an abnormal

B-scan using the following rule:

b is abnormal if ∆GMM(b̃) > δ. (5)

Figure 3 summarizes the abnormal B-scans detection procedure using a

GMM.

2.4. SD-OCT volumes classification

The final step of our methodology is the identification of patients with

retinal diseases, such as DME, versus normal subjects. Given a SD-OCT

volume with NY B-scans, V = {b1, b2, . . . , bNY
}, we first detect the number

of abnormal B-scans in V using the approach described in Section 2.3, and

Equation (5). The SD-OCT volume is then classified as normal or abnormal

based on the number of detected abnormal B-scans. Ideally, a normal OCT
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Figure 3: Abnormal B-scans detection using a Gaussian mixture model.

volume should contain no abnormal B-scan, while an abnormal one should

contain many. In practice, we set a threshold value on the number of detected

abnormal B-scans, in order to identify diseased SD-OCT volumes. In order

to increase the robustness of the method, we observe that a clinical signs of

a disease, such as hard exudates or cystoid spaces, should be visible in more

than one single B-scan. In other words, if a B-scan bi ∈ V = {b1, b2, . . . , bNY
}

is detected as abnormal, then at least one of its neighboring B-scans in the

y-axis, i.e. bi−1 or bi+1, should also be detected as abnormal. This empirical

observation reduces the number of false detections. This threshold param-

eter is empirically set, and the values used in our experiments are given in

Section 3.3.

The two main parameters of the proposed method are the number of

Gaussian components K and the threshold, i.e. the number of abnormal

B-scans, used to detect diseased SD-OCT volumes. The former parameter

is set during training of the GMM by cross-validation, Section 3.2, and the

selected parameter is used for testing the model. The latter is chosen such

that the classification accuracy is optimized, and we performed experiments
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with different values in Section 3.3.

3. Experiments and results

In this section, we evaluate the performance of the proposed method in

detecting abnormal SD-OCT volumes. We use two different datasets for the

experiments and we also compare the proposed anomaly detection based ap-

proach with two existing methods based on features detection and supervised

classification [19, 20].

3.1. Datasets

We use two different datasets in our experiments. The first dataset, which

we name SERI, consists of 32 SD-OCT volumes (16 DME and 16 normal

cases), and was provided by Singapore Eye Research Institute (SERI). This

data is acquired using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA)

SD-OCT camera, and each OCT volume contains 128 B-scans each of size

400 × 512 pixels. All 32 volumes were read and assessed by trained graders

and classified as normal or DME based on the presence of specific signs such

as retinal thickening, hard exudates, and intra-retinal cystoid space.

The second dataset, which we refer to as Duke, is provided by Duke Uni-

versity [16]. The dataset consists in 45 SD-OCT volumes from 15 DME pa-

tients, 15 AMD patients and 15 normal subjects, respectively. Note however

that we will only use the DME and normal OCT volumes in our experiments,

i.e. 30 SD-OCT volumes. The data is acquired using Spectralis (Heidelberg

Inc., Heidelberg, Germany) camera, and the number of B-scans per volume

varies from 31 to 97 scans, each of size 512× 496 pixels.
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3.2. GMM training

The proposed SD-OCT volumes classification method is based on the de-

tection of abnormal B-scans using a GMM as described in Section 2. There-

fore, the first step of the approach is the learning of a GMM which represents

the global intensity appearance of normal SD-OCT images.

For a given dataset, we use part of the normal SD-OCT data for training,

i.e. for learning the GMM. For example, for the SERI dataset, we randomly

select 11 of the 16 normal volumes for training. We first apply PCA to

reduce the dimensionality of the data from d = 400 × 512 = 204800 to

p = 500. The value 500 is selected such that 95% of the total variance

of the the data is preserved during projection onto the lower dimensional

space. Then, we fit a mixture of Gaussian model to the data in the reduced

space of dimension 500 as described in Section 2.2. The key parameter of

the model is the number K of Gaussians used in the GMM. This parameter

is selected such that the created GMM well represents the appearance of

normal B-scans. We set its value by cross-validation. More precisely, we use

8 of the 11 training volumes for fitting a GMM with K components, and we

use the remaining 3 volumes for validation. This is done by checking each B-

scan of the validation OCT volumes against the learned GMM, and detecting

outliers using Equation 5. For each value of K, we repeat the cross-validation

experiment, i.e. training with 8 volumes and testing with 3, 10 times and

report the average classification accuracy.

A similar training procedure is used for the Duke dataset. However, since

this dataset contains 15 normal patients, we use 10 normal SD-OCT volumes

to learn the GMM.
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Figure 4: Variation of B-scans classification w.r.t. the number of Gaussian components.

Cross-valiadtion results for SERI dataset.

The obtained average classification accuracies are shown in Fig 4. The

best classification accuracy is achieved by K = 5, which is the GMM giv-

ing the least number of misclassified B-scans, for SERI dataset. For Duke

dataset, the best value is K = 7. Once, the number of Gaussian components

is selected, K = 5 and K = 7 for SERI and Duke dataset, respectively, the

final GMM is fitted using all training volumes, i.e. 11 for SERI dataset and

10 for Duke dataset.

One should note that we train one GMM for each dataset. Since the

datasets were acquired in different locations, in different conditions, and

with different machines, the intensity distribution and the obtained GMM
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are different. Hence, the best number of Gaussian components is also dataset

dependent.

3.3. Classification results

For SERI dataset, we test the proposed method using the 5 normal SD-

OCT volumes not used for training the GMM, and all 16 DME cases. Sim-

ilarly, for Duke dataset, we test the method with the 5 normal volumes not

used for training, and all 15 DME cases. The performance of the method is

evaluated in terms of sensitivity and specificity values.

A test SD-OCT volume is classified as normal or abnormal based on the

number of detected abnormal B-scans. Ideally, a normal SD-OCT volume

should contain no abnormal B-scan, while an abnormal one should contain

many. So, a volume is classified as abnormal if it contains a number of

abnormal B-scans greater than or eaqual to a predifined threshold value. We

have tried different threshold values with the SERI dataset and the results

are shown in Table 1. As expected, a low threshold gives high sensitivity

at the cost of low specificity, and as the threshold increases, the specificity

increases while the sensitivity decreases. Indeed, with a low threshold value

many normal volumes are classified as abnormal, while with a large threshold

value many abnormal volumes are classified as normal.

The best results for SERI dataset are obtained with a threshold value of

4, which yields a sensitivity and a specificity of 93.75% and 80%, respectively.

Note that we will use the same threshold value for both datasets, i.e. we use

the threshold chosen with SERI dataset to classify the OCT data from Duke

dataset.

We also compare the proposed SD-OCT volumes classification method
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Threshold 2 4 6 8 10

Sensitivity 100 93.75 87.50 75.00 62.50

Specificity 60.00 80.00 80.00 100 100

Table 1: Variation of SD-OCT volumes classification results w.r.t. the threshold (i.e. the

# of detected abnormal B-scans). Results for SERI dataset.

with two existing methods based on features detection and supervised clas-

sification [19, 20]. Venhuizen et al. [19] used intensity features and random

forest classifier, and Lemâıtre et al. [20] used LBP features with random

forest for classification. Note that for these two methods, the classification

performances are computed using a leave-one-out strategy. That is, a pair

of normal-DME volumes is selected for testing while the rest of the data is

used the training the classifier. This procedure is repeated 16 times and 15

times for SERI and Duke dataset, respectively.

Table 2 shows the classification results obtained with the three methods

using both datasets. We can observe that the proposed method achieves

better performances than the other two methods using the SERI dataset.

For this dataset, the proposed method achieves a sensitivity and a specificity

Method

Proposed Venhuizen et al. [19] Lemâıtre et al. [20]

SERI Sens 93.75 61.53 87.50

dataset Spec 80.00 58.82 75.00

Duke Sens 80.00 71.42 86.67

dataset Spec 100 68.75 100

Table 2: SD-OCT volumes classification results.
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of 93.75% and 80%, while our implementation of the method of Venhuizen

et al. [19] achieves a sensitivity and a specificity of 61.53% and 58.82%, and

the method of Lemâıtre et al. [20] achieves 87.50% and 75% respectively.

The difference in performances between Venhuizen et al. [19] and Lemâıtre

et al. [20] indicates that for supervised classification, texture features such

as LBP used in [20] are better than intensity features used in [19].

For the second dataset, Duke dataset, the proposed approach achieves

a sensitivity of 80% and a specificity of 100%. The method of Lemâıtre

et al. [20] achieves the same specificity and a better sensitivity of 86.67%.

However, this method classifies the OCT volume as a whole and does not

allow the identification of specific B-scans. As mentioned in Section 1.3, one

main advantage of the proposed approach is the ability to identify abnormal

B-scans inside a volume. This is useful, since it avoids a visual inspection of

all B-scans in the volume. Furthermore, once abnormal B-scans are detected,

one can focus on the segmentation of specific features such as exudates or

cysts in that B-scan. Our approach differs from previous works which require

a training set with manually annotated normal and abnormal B-scans, which

is a tedious and time consuming task. Figure 5 shows some of the abnormal

B-scans detected by the proposed method. As can be seen, B-scans with

strong DME features, such as subretinal and intraretinal fluids and cysts, are

identified by our approach, as well as B-scans with small changes from healthy

condition. Note that the B-scans shown in this figure are raw images from

both datasets, without pre-processing. Hence, the visible noise reduction

corresponds to the acquisition process inherent to the respective machine.

Figure 6 shows examples of abnormal B-scans which are not detected by
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(a) (b)

Figure 5: Examples of detected abnormal B-scans by the proposed method: (a) B-scans

from Duke dataset; (b) B-scans from SERI dataset.

our method. These are mostly B-scans showing small changes from healthy

condition such as few exudates.

4. Conclusion

In this paper, we have proposed a novel method for automatic classifica-

tion of spectral domain OCT (SD-OCT) data, for the identification of pa-

tients with diseases such as Diabetic Macular Edema (DME) versus healthy

patients. Our method is based on an anomaly detection approach in which we
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Figure 6: Examples of abnormal B-scans not detected by the proposed method. (a) B-scan

from Duke dataset; (b) B-scan from SERI dataset.

model the appearance of normal SD-OCT images with a Gaussian Mixture

Model (GMM) and we detect abnormal SD-OCT images as outliers. Finally,

we classify a SD-OCT volume as normal or abnormal based on the number

of detected outliers in the volume. Experimental results with two different

datasets show that the proposed method achieves excellent results and out-

performs other recently published works based and features extraction and

supervised classification. In particular, our method achieves a sensitivity

and a specificity of 80% and 93% on the first dataset, and 100% and 80%

on the second one. Furthermore, the proposed method not only allows the

classification of the SD-OCT volume, but also allows the identification of

the individual abnormal B-scans inside each volume. So, it can be used as a

first step towards more specific detection of DME features from the identified

abnormal B-scans.

The proposed framework can easily be extended to include other types

of features, such as texture or contrast features. In future works, we will
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investigate the detection of other retinal diseases such as AMD, and the

possibility to discriminate between different diseases.
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G., Kumar, D., Burlina, P., Bressler, N.M., Jelinek, H. F., Meriaudeau,

F., Quellec, G., MacGillivray, T., and Dhillon, B., “Validation retinal

fundus image analysis algorithms: issues and proposal”, in Investigative

Ophthalmology & Visual Science, vol. 54(5), pp. 3546-3569, 2013.

[9] Costa, R.A., Skaf, M., Melo Jr, L.A.S., Calucci, D., Cardillo, J.A., Cas-

tro, J.C., Huang, D., Wojtkowski, M., “Retinal assessment using optical

coherence tomography”, Progress in Retinal and Eye Research, 25(3),

pp. 325-353, 2006.

[10] Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abramoff, M.D., Sonka,

M., “Three-dimensional analysis of retinal layer texture: identification

of fluid-filled regions in sd-oct of the macula”, IEEE Trans. on Medical

Imaging, vol. 29, pp. 1321-1330, 2010.

24



[11] Chen, X., Niemeijer, M., Zhang, L., Lee, K., Abramoff, M.D., Sonka,

M., “3D segmentation of fluid-associated abnormalities in retinal OCT:

Probability constrained graph-search-graph cut”, IEEE Trans. on Med-

ical Imaging, 31(8), pp. 1521-1531, 2012.

[12] Ghorbel, I., Rossant, F., Bloch, I., Tick, S., Paques, M., “Automated

segmentation of macular layers in oct images and quantitative evaluation

of performances”, Pattern Recognition, vol. 44(8), pp.1590-1603, 2011.

[13] Kafieh, R., Rabbani, H., Kermani, S., “A review of algorithms for seg-

mentation of optical coherence tomography from retina”, Journal of

Medicals Signals and Sensors, vol. 3(1), pp. 45-60, 2013.

[14] Lee, J.Y., Chiu, S.J., Srinivasan, P.P., Izatt, J.A., Toth, C.A., Farsiu,

S., Jaffe, G., “Fully automatic software for retinal thickness in eyes with

diabetic macular edema from images acquired by Cirrus and Spectralis

systems”, Investigative Ophthalmology & Visual Science, vol. 54(12), pp.

7595-7602, 2013.

[15] Liu, Y.Y., Chen, M., Ishikawa, H., Wollstein, G., Schuman, J.S., Rehg,

J.M., “Automated macular pathology diagnosis in retinal oct images

using multi-scale spatial pyramid and local binary patterns in texture

and shape encoding”, Medical Image Analysis, 15, pp. 748-759, 2011.

[16] Srinivasan, P.P., Kim, L.A., Mettu, P.S., Cousins, S.W., Comer, G.M.,

Izatt, J.A., Farsiu, S., “Fully automated detection of diabetic macular

edema and dry age-related macular degeneration from optical coherence

25



tomography images”, Biomedical Optical Express, 5(10), pp. 3568-3577,

2014.

[17] Anantrasirichai, N., Achim, A., Morgan, J.E., Erchova, I., Nicholson, L.,

“SVM-based texture classification in optical coherence tomography”, In:

IEEE Symposium on Biomedical Imaging, pp. 1332-1335, 2013.

[18] Albarrak, A., Coenen, F., Zheng, Y., “Age-related macular degeneration

identification in volumetric optical coherence tomography using decom-

position and local feature extraction”, In: 17th Annual Conference in

Medical Image Understanding and Analysis, pp. 59-64, 2013.

[19] Venhuizen, F.G., van Ginneken, B., Bloemen, B., van Grisven, M.J.P.P.,

Philipsen, R., Hoyng, C., Theelen, T., Sanchez, C.I., “Automated age-

related macular degeneration classification in oct using unsupervised

feature learning”, In: SPIE Medical Imaging, vol. 9414, pp. 94141l, 2015.
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